Nice pseudo-Riemannian nilsolitons
نویسندگان
چکیده
We study nice nilpotent Lie algebras admitting a diagonal nilsoliton metric. classify Riemannian nilsolitons up to dimension 9. For general signature, we show that determining whether algebra admits metric reduces linear problem together with system of as many polynomial equations the corank root matrix. any signature: in ≤7; 8 for ≤1; 9 zero.
منابع مشابه
Generalized pseudo-Riemannian geometry
Generalized tensor analysis in the sense of Colombeau’s construction is employed to introduce a nonlinear distributional pseudo-Riemannian geometry. In particular, after deriving several characterizations of invertibility in the algebra of generalized functions we define the notions of generalized pseudo-Riemannian metric, generalized connection and generalized curvature tensor. We prove a “Fun...
متن کاملUmbilicity of (Space-Like) Submanifolds of Pseudo-Riemannian Space Forms
We study umbilic (space-like) submanifolds of pseudo-Riemannian space forms, then define totally semi-umbilic space-like submanifold of pseudo Euclidean space and relate this notion to umbilicity. Finally we give characterization of total semi-umbilicity for space-like submanifolds contained in pseudo sphere or pseudo hyperbolic space or the light cone.A pseudo-Riemannian submanifold M in (a...
متن کاملPseudo-riemannian Jacobi–videv Manifolds
We exhibit several families of Jacobi–Videv pseudo-Riemannian manifolds which are not Einstein. We also exhibit Jacobi–Videv algebraic curvature tensors where the Ricci operator defines an almost complex structure.
متن کاملFlat Homogeneous Pseudo-Riemannian Manifolds
The complete homogeneous pseudo-Riemannian manifolds of constant non-zero curvature were classified up to isometry in 1961 [1]. In the same year, a structure theory [2] was developed for complete fiat homogeneous pseudo-Riemannian manifolds. Here that structure theory is sharpened to a classification. This completes the classification of complete homogeneous pseudo-Riemannian manifolds of arbit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2022
ISSN: ['1879-1662', '0393-0440']
DOI: https://doi.org/10.1016/j.geomphys.2021.104433